Recent methods for solving the high-frequency Helmholtz equation on a regular mesh

Chris Stolk

Univ. of Amsterdam
ICERM, November 9, 2017

Overview

- We study the Helmholtz equation

$$
\left(-\Delta-k(x)^{2}\right) u(x)=f(x), \quad k(x)=\frac{\omega}{c(x)}
$$

mostly on rectangular domains with absorbing layers (e.g. PML).

- Three ideas to improve solvers
- An FD method very small numerical dispersion on coarse meshes
- Improved two-grid and multigrid methods
- Domain decomposition
- Justification using analytical and numerical results
- A hybrid solver

Numerical dispersion

Numerical dispersion leads to propagating wave solutions $e^{i \xi_{\mathrm{FD}} \cdot x}$ with wavenumber errors

$$
\left\|\xi_{\mathrm{FD}}(\theta)\right\| \neq k
$$

Leads to large errors in solution:

Relative wave number errors should be very small, e.g.
$e(\theta) \stackrel{\text { def }}{=}\left|\frac{\left\|\xi_{\mathrm{FD}}(\theta)\right\|}{k}-1\right| \lesssim 10^{-4}, \quad$ for each direction $\theta=\frac{\xi_{\mathrm{FD}}}{\left\|\xi_{\mathrm{FD}}\right\|} \in S^{d-1}$!

Discretizations for small numerical dispersion

- High-order finite elements (on regular and unstructured meshes)
- High-order finite differences with long stencils
- $3 \times 3 \times 3$ cubic stencils (compact stencil).
- QS-FEM (2-D), is optimal in 2-D, (Babuska et al. 1995)
- 6-th order FD (Sutmann, 2007; Turkel et al., 2013)
- Optimized FD (Jo, Shin, Suh 1998; Operto et al 2007; ...)
- Plan:
- A new optimized compact stencil method
- Comparison of phase errors (except unstructured FE)
- Geometrical optics analysis and numerical example

Finite difference Helmholtz operators, constant k

 Let $(h \mathbb{Z})^{d}$ be our mesh, and $x=h \alpha$, with $\alpha \in \mathbb{Z}^{d}$ the meshpoints. A compact stencil discrete Helmholtz operator P has matrix elements$$
p_{\alpha, \beta}=\frac{1}{h^{2}} f_{\alpha-\beta}(h k), \quad \alpha, \beta \in \mathbb{Z}^{d}
$$

for some functions f_{γ} that are nonzero for $\gamma \in\{-1,0,1\}^{d}$.
Acts multiplicatively on plane wave $e^{i x \cdot \xi}$. Factor is given by the symbol

$$
P(\xi)=h^{-2} \sum_{\gamma} f_{\gamma}(h k) e^{i h \gamma \cdot \xi}
$$

Assumption The symbol $P(\xi)$ is like that of the continuous operator $H(\xi)=\xi^{2}-k^{2}$, in the sense that
(i) $P(\xi)$ has a zero-set Z_{P} that is the boundary of a convex set containing the origin
(ii) $\frac{\partial P}{\partial \xi} \neq 0$ on Z_{P}

The limit $x \rightarrow \infty$

Theorem (S., cf. Lighthill 1960) The outgoing solution to $P u=\delta$ satisfies

$$
u(x)=(2 \pi)^{-\frac{d-1}{2}} e^{-\frac{(d-1) \pi i}{4}}\|x\|^{-\frac{d-1}{2}} \frac{i K\left(\xi_{+}\right)^{-1 / 2}}{\left\|\partial P / \partial \xi\left(\xi_{+}\right)\right\|} e^{i x \cdot \xi_{+}}+O\left(\|x\|^{-1 / 2-d / 2}\right)
$$

where d is dimension, $K(\xi), \xi \in Z_{P}$ is (generalized) Gaussian curvature of Z_{P} and $\xi_{ \pm}(x)$ denote the maxima arg $\max _{\xi \in Z_{P}} \pm x \cdot \xi$.

Consequences

- Z_{P} should be close to the set $\|\xi\|=k$ to minimize phase errors
- To obtain (close to) correct amplitudes, we solve

$$
P v=\tilde{Q} \delta, \quad u=\hat{Q} v
$$

where the order zero operators \tilde{Q} and \hat{Q} have matrix elements and symbols

$$
\tilde{q}_{\alpha, \beta}=\tilde{g}_{\alpha-\beta}(h k), \quad \tilde{Q}(\xi)=\sum_{\gamma} \tilde{g}_{\gamma}(h k) e^{i h \gamma \cdot \xi}, \quad \hat{Q} \text { similar }
$$

such that $\left.\frac{\tilde{Q}(\xi) \hat{Q}(\xi)}{\| \partial P / \partial \xi(\xi)}\right|_{\xi \in Z_{P}} \approx \frac{1}{2 k}$.

A parameterized finite difference operator

We define a discrete operator with 5 parameter functions $\alpha_{j}=\alpha_{j}\left(\frac{h k}{2 \pi}\right)$

$$
P=-D_{x x} \otimes I_{y, z}^{(2)}-D_{y y} \otimes I_{x, z}^{(2)}-D_{z z} \otimes I_{x, y}^{(2)}-k^{2} I^{(3)}
$$

where

$$
\begin{aligned}
& D_{x x}=h^{-2}\left[\begin{array}{lll}
-1 & 2 & -1
\end{array}\right] \\
& I^{(2)}=\alpha_{4}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{\alpha_{5}}{4}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\frac{1-\alpha_{4}-\alpha_{5}}{4}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\prime^{(3)}=$ similar in 3-D with coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$

Optimal coefficients

- $\alpha_{j}\left(\frac{h k}{2 \pi}\right)$ depends on $\frac{h k}{2 \pi}=\frac{1}{\mathrm{ppw}}$ via Hermite interpolation on 9 control points.
- carefully minimize phase errors at approximately 400 angles and 40 values of $\frac{h k}{2 \pi}$ for ≥ 2.5 points per wavelength

| $\frac{h k}{2 \pi}$ | α_{1} | $\frac{\partial \alpha_{1}}{\partial(1 / G)}$ | α_{2} | $\frac{\partial \alpha_{2}}{\partial(1 / G)}$ | α_{3} | $\frac{\partial \alpha_{3}}{\partial(1 / G)}$ | α_{4} | $\frac{\partial \alpha_{4}}{\partial(1 / G)}$ | α_{5} | $\frac{\partial \alpha_{5}}{\partial(1 / G)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0000 | 0.635413 | -0.000228 | 0.210638 | 0.016303 | 0.172254 | -0.014072 | 0.710633 | -0.006278 | 0.245303 | 0.019576 |
| 0.0500 | 0.635102 | -0.015578 | 0.210152 | -0.023424 | 0.171912 | -0.005802 | 0.709821 | -0.047764 | 0.245148 | 0.021398 |
| 0.1000 | 0.634166 | -0.034804 | 0.208167 | -0.043396 | 0.171146 | -0.012462 | 0.707374 | -0.070981 | 0.244762 | 0.007493 |
| 0.1500 | 0.632093 | -0.054496 | 0.205348 | -0.065935 | 0.170031 | -0.022145 | 0.703359 | -0.088202 | 0.245160 | 0.009937 |
| 0.2000 | 0.628341 | -0.103457 | 0.201605 | -0.069385 | 0.169740 | 0.001893 | 0.698813 | -0.092327 | 0.245687 | 0.012201 |
| 0.2500 | 0.622526 | -0.133896 | 0.197423 | -0.098212 | 0.169475 | -0.002559 | 0.694726 | -0.066617 | 0.246454 | 0.016791 |
| 0.3000 | 0.614611 | -0.183988 | 0.192414 | -0.115398 | 0.168690 | -0.005589 | 0.692615 | -0.011177 | 0.247743 | 0.029213 |
| 0.3500 | 0.603680 | -0.255991 | 0.186819 | -0.120930 | 0.167581 | -0.015564 | 0.694109 | 0.077605 | 0.250098 | 0.059733 |
| 0.4000 | 0.588498 | -0.356326 | 0.180737 | -0.132266 | 0.166640 | -0.001852 | 0.700902 | 0.199685 | 0.254352 | 0.106049 |

- We set $\hat{Q}=\tilde{Q}=Q$ and also find coefficients for Q on a cubic stencil.

Comparison of relative phase errors

QS-FEM (2-D)(Babuska et al., 1995) and IOFD (2-D and 3-D) have the smallest dispersion errors with few points per wavelength.

Classical geometrical optics

- Consider smoothly varying k (c is C^{2} or smoother)
- In classical geometrical objects the ansatz is $u=A(x) e^{i \omega \Phi(x)}$

$$
\left(-\Delta-\frac{\omega^{2}}{c^{2}}\right) A(x) e^{i \omega \Phi(x)}=\left[\omega^{2} A\left((\nabla \Phi)^{2}-\frac{1}{c^{2}}\right)+\omega(\ldots)+O(1)\right] e^{i \omega \Phi(x)} .
$$

- In terms of the symbol $\tilde{H}(x, \xi)=\xi^{2}-\frac{1}{c(x)^{2}}$ we find the equations
$\tilde{H}(x, \nabla \Phi(x))=0 \quad$ (eikonal equation)
$\sum_{j}\left(L_{\tilde{H}, \Phi}\right)_{j} \frac{\partial A}{\partial x_{j}}+\frac{1}{2}\left(\operatorname{div} L_{\tilde{H}, \Phi}\right) A+(t-1 / 2) \sum_{j} \frac{\partial^{2} \tilde{H}}{\partial x_{j} \partial \xi_{j}} A=0 \quad$ (transport eq.)
where $\left(L_{\tilde{H}, \Phi}\right)_{j}=\frac{\partial \tilde{H}}{\partial \xi_{j}}(x, \nabla \Phi)$ (Duistermaat, 1996)
- Point source solutions, are obtained by choosing appropriate initial conditions for A and Φ.

Geometrical optics for discrete Helmholtz operators

- Asymptotics for $\omega \rightarrow \infty, \omega h=$ constant (variable k)
- The symbol becomes $P(x, \xi)=h^{-2} \sum_{\gamma} f_{\gamma}(h k(x)) e^{i h \gamma \cdot \xi}$
- We consider the discretization

$$
p_{\alpha, \beta}=\frac{1}{h^{2}} f_{\alpha-\beta}(h k((1-t) \alpha h+t \beta h)),
$$

for $t \in\{0,1 / 2,1\}$. This is the t-quantization of $P(x, \xi)$

$$
\mathrm{Op}_{t}(P(x, \xi)) u(x) \stackrel{\text { def }}{=}(2 \pi)^{-d} \sum_{y \in(h Z)^{d}} \int_{[-\pi / h, \pi / h]^{d}} P(x+t(y-x), \xi) e^{i(x-y) \cdot \xi} u(y) d \xi
$$

- Using Taylor expansions of the phase functions the same eikonal and transport equations in terms of $P(x, \xi)$ are obtained.

Variable k results

- Correct geometrical optics phase and amplitude result if
(i) $P(x, \xi)$ has same zeros as $H(x, \xi)=\xi^{2}-k(x)^{2}$
(ii) $t=1 / 2$ is used in the quantization
(iii) $\tilde{Q}=\hat{Q} \stackrel{\text { def }}{=} Q$ and $Q(\xi)$ satisfies

$$
\left.\frac{Q(\xi)^{2}}{\|\partial P / \partial \xi(\xi)\|}\right|_{\xi \in Z_{P}}=\frac{1}{2 k}
$$

(same equation as before)

- Small phase errors (proportional to distance from source) and amplitude errors result if the equalities are satisfied only approximately
- The dispersion minimizing scheme can provide accurate solutions if the velocity $c(x)$ is smooth

Simulations at constant k (2-D)

FD2, 10ppw, 20wl

CHO6, 6ppw, 500wl

CHO6, 5ppw, 500wl

CHO6, 4ppw, 500wl

IOFD, 6ppw, 500wl

IOFD, 5ppw, 500wl

IOFD, 4ppw, 500wl

IOFD, 3ppw, 500wl

IOFD, 2.5ppw, 100wl

Smoothed Marmousi example

Compare a IOFD solution at 6 ppw with a FE4 solution 12 ppw.

Solution at 50 Hz
solution at 50 Hz

Reference amplitude and relative local error at 50 Hz

Local error mostly $<1 \%$

Multigrid for Helmholtz equations

- Multigrid was developed for elliptic problems were it is highly efficient
- For time-harmonic problems using standard multigrid, a relatively fine discretization $\gtrsim 10$ points per wavelength at the coarse level is required
- Elliptic and shifted-Laplacian preconditioners use multigrid: The multigrid scheme of a complex-shifted operator acts as a preconditioner. (Bayliss et al, 1983; Erlannga, Oosterlee, Vuik, 2004; Calandra, Gratton et al., 2013; ...). Typically requires many iterations.
- Idea (S. et al 2014): Optimized discretizations on a coarse mesh can be used to speed up the solution process for a finer mesh discretization.

Multigrid with optimized coarse discretizations

- Plan today:
- Local Fourier analysis to choose parameters and compare methods
- analyze weakly damped Helmholtz operators on infinite domain $H=-\Delta-((1+\alpha i) k)^{2}$
e.g. $\alpha=0.01$ corresponds to a damping of $6.28 \% /$ cycle
- A numerical example with damping only at the boundary
- Two-grid method for an approximate solution was obtained by testing different parameter choices using local Fourier analysis:
- Simple iterative solver (smoother) (3 times ω-Jacobi, $\omega \approx 0.7$)
- Compute residual, restrict to coarse mesh, solve on coarse mesh, interpolate back to fine mesh
- Simple iterative solver again
- Apply this as a preconditioner for GMRES

Local Fourier analysis of the two-grid method

Local Fourier analysis is a standard method in multigrid analysis (Trottenberg et al., 2001)
Let h be the fine mesh distance, $2 h$ coarse mesh distance.
We consider Fourier-Bloch waves on cells of size $2 h$

$$
u\left(x_{1}+j_{1} 2 h, x_{2}+j_{2} 2 h\right)=e^{i\left(j_{1} \xi_{1}+j_{2} \xi_{2}\right)} u\left(x_{1}, x_{2}\right) .
$$

Operators are block diagonal on a Fourier-Bloch basis In such a basis, the action of multigrid on the residual is given by 4×4 matrices

$$
\begin{aligned}
M_{h}^{2 h}(\xi) & =S(\xi)^{\nu_{2}} K_{h}^{2 h}(x i) S(\xi)^{\nu_{1}} \\
K_{h}^{2 h}(\xi) & =I-R_{h}(\xi)\left(P_{\text {coarse }, 2 h}(\xi)\right)^{-1} R_{h}(\xi) P_{\text {fine }, h}(\xi)
\end{aligned}
$$

where $S(\xi)$ is the action of one iteration of ω-Jacobi on the residual, $\boldsymbol{R}_{h}^{T}(\xi)$ and $\boldsymbol{R}_{h}(\xi)$ are for interpolation and restriction and $P_{\text {coarse }, 2 \mathrm{~h}}(\xi)$ and $P_{\text {fine, }}(\xi)$ are Helmholtz operator symbols.

Two-grid convergence factor

Two-grid convergence factor

$$
\rho=\sup _{\xi \in\left[-\frac{\pi}{2 h}, \frac{\pi}{2 h}\right]^{2}} \text { SpectraIRadius }\left(M_{h}^{2 h}(\xi)\right)
$$

Numerical computation of convergence factors (S. et al, 2014)

FD5-optimized matching FD5

coarse	$\alpha=$	$\alpha=$
ppw	$1.25 \mathrm{e}-3$	0.005
3	0.634	0.439
3.5	0.228	0.204
4	0.170	0.156
6	0.079	0.079
8	0.067	0.067

FD5-Galerkin

coarse	$\alpha=$	$\alpha=$
ppw	0.005	0.02
6	>1	>1
7	>1	>1
8	>1	0.896
10	>1	0.588
12	>1	0.415

(IOFD at fine and coarse levels slightly outperforms FD5-optimized.)

Two-grid iteration count

Iterations for residual reduction by 10^{-6} with "sponge" bdy conditions.
2-D slice of SEG-EAGE model

	constant 2400×2400		salt model 2700×836	
ppw fine	freq	its	freq	its
5	480	29	60	18
6	400	8	50	8
8	300	5	37.5	6
10	240	4	30	5

- Multigrid with optimized FD at the coarse level works, downto $\sim 3 \mathrm{ppw}$ at the coarse level.
- However, in 3-D, the coarse level linear system can remain large

Double sweep domain decomposition

- Get solution by solving a sequence of subdomain problems
- artificial boundaries should not introduce reflections
- coupling s.t. incoming waves in domain j are outgoing waves in domains $j \pm 1$

- Schwartz type methods involve coupling through numerical absorbing boundary conditions (Benamou, Desprès 1997; Gander et al., 2007; ...)
- Sweeping methods (Engquist, Ying, 2010) use very thin subdomains with PML on one side
- Idea: (S., 2013, 2017)
- subdomains with PML layers on both sides (cf. Schadle, 2007)
- coupling via source terms involving single and double potentials
- Forward and backward sweep with shifted domain boundaries

Domain decomposition method in 1-D

Robin boundary value problem

$$
\begin{array}{ll}
A u=f \text { for } 0<x<L, & A=-\partial_{x x}-k^{2}, \\
\partial_{x} u(0)+i k u(0)=h_{1}, & -\partial_{x} u(L)+i k u(L)=h_{2} .
\end{array}
$$

Let $0=b_{0}<b_{1}<\ldots<b_{J}=L$ be domain boundaries, and $A^{(j)}$ the Helmholtz operator on $\left[b_{j-1}-\epsilon, b_{j}+\epsilon\right]$ with Robin boundary conditions as above.
Upward sweep
(1) For $j=1,2, \ldots, J$, solve $v^{(j)}$ from

$$
\begin{aligned}
& P^{(j)} v^{(j)}=I_{x \in\left[b_{j-1}, b_{j}\right]} f+T_{+}^{(j)} v^{(j-1)} \\
& T_{+}^{(j)} v^{(j-1)}= \begin{cases}0 & \text { if } j=1 \\
P^{(j-1)} H\left(b_{j-1}-x\right) v^{(j-1)}+H\left(b_{j-1}-x\right) P^{(j-1)} v^{(j-1)} & \text { otherwise }\end{cases}
\end{aligned}
$$

(2) Define an approximate solution $v(x)=\sum_{j=1}^{J} l_{x \in\left[b_{j-1}, b_{j}\right]}(x) v^{(j)}(x)$

Domain decomposition method in 1-D (cont'd)

Downward sweep:

- Define new domain boundaries $0=\tilde{b}_{0}<\tilde{b}_{1}<\ldots<\tilde{b}_{J}=L$, such that $b_{j} \neq \tilde{b}_{k}$ for any j, k.
- The downward sweep acts on the residual $g=f-P v$ to produce an approximate solution w to $P g=w$.
The "double sweep" approximate solution is $u=v+w$.
- The downward sweep is similar to the upward sweep.

Remarks on the 1-D problem

- The source transfer term $T_{+} v^{(j-1)}$ is a sum of single and double potentials

$$
\begin{aligned}
T_{+}^{(j)} v^{(j-1)} & =P^{(j-1)} H\left(b_{j-1}-x\right) v^{(j-1)}+H\left(b_{j-1}-x\right) P^{(j-1)} v^{(j-1)} \\
& =a \delta\left(x-b_{j-1}\right)+b \delta^{\prime}\left(x-b_{j-1}\right)
\end{aligned}
$$

and causes only forward propagating waves

- The solution formula for the 1-D Helmholtz equation gives that

$$
\begin{aligned}
v(x)= & \frac{i}{2 k} \int_{0}^{x} e^{i x(x-s)} f(s) d s \\
& +\frac{i}{2 k} \int_{x}^{b_{l}} e^{-i k(x-s)} f(s) d s \quad \text { for } x \in\left(b_{l-1}, b_{l}\right) \\
u(x)= & \text { exact solution } \\
= & \frac{i}{2 k} \int_{0}^{x} e^{i x(x-s)} f(s) d s+\frac{i}{2 k} \int_{x}^{L} e^{-i k(x-s)} f(s) d s
\end{aligned}
$$

Discretization and extension to 3-D

- The above description is straightforwardly extended to the discrete 2-D and 3-D cases (with domain decomposition along the x_{1} axis)
- In this case the domain boundaries b_{j} are chosen halfway between grid points, and $\tilde{b}_{j}=b_{j}+1$ or $\tilde{b}_{j}=b_{j}-1$.
- There is a two grid-cell overlap between subdomains j and $j \pm 1$.
- At the internal boundaries, PML layers are added to simulate absorbing boundaries. PML means that

$$
\frac{\partial}{\partial x_{1}} \text { is replaced by } \frac{1}{1+i \omega^{-1} \sigma\left(x_{1}\right)} \frac{\partial}{\partial x_{1}} .
$$

with σ_{1} increasing quadratically into the x_{1}-boundary layers.

- At the external boundaries, PML layers, or classical damping layers can be used.
- upward and downwardsweep can be done in parallel (X-sweep)

2-D Marmousi example

$N_{x} \times N_{y}$	$h(\mathrm{~m})$	$\frac{\omega}{2 \pi}(\mathrm{~Hz})$	Number of x-subdomains				
			3	10	30	100	300
600×212	16	12.5	4	5	6		
1175×400	8	25	5	6	7		
2325×775	4	50	6	6	7	9	
4625×1525	2	100	6	6	7	8	
9225×3025	1	200		7	8	9	8^{*}

Results from S., 2013.

A hybrid solver

- Idea (S., 2017): In the two-grid method, the coarse level solver can be replaced by a domain decomposition preconditioner.
- Parallel 3-D implementation
- Linux cluster with 64 GB per node, 16 cores/node, up to 16 nodes at surfsara.nl.
- Cartesian mesh decomposition for multigrid
- Subdomain solves done on 8 to 32 cores using MUMPS
- Subdomains must be solved consecutively: Pipeline solution process to keep all nodes busy

Example: SEG-EAGE Salt model

Velocity: SEG-EAGE salt model, $676 \times 676 \times 210$ points, $h=20 \mathrm{~m}$.

Solution for $f=12.5 \mathrm{~Hz}: x z$ and $y z$ slices

frequency	6.25	7.87	9.91	12.5
size	$338 \times 338 \times 106$	$426 \times 426 \times 132$	$536 \times 536 \times 166$	$676 \times 676 \times 210$
\# dof	$1.3 \cdot 10^{7}$	$2.5 \cdot 10^{7}$	$5.0 \cdot 10^{7}$	$1.0 \cdot 10^{8}$
cores	32	64	128	256
\# of rhs.	1	2	4	8
iterations	12	12	13	15
time/rhs.	26	35	45	73

Fast compared to methods in the literature!

Discussion

- Sizeable efficiency gains in some Helmholtz problems
- Variants of sweeping domain decomposition have been applied to finite element discretizations, EM and elastic waves (Tsuji et al. 2014; Vion, Geuzaine, 2014; ...).
The key point is the reduced memory use compared to the direct method.
- Sweeping domain decomposition remains difficult to parallellize
- Multigrid with optimized finite differences can combine
- fine sampling for accurate discretization
- very coarse sampling in the costly part of the solver

Direct generalization to FE fails.
Can we extend this to more general meshes?

THANK YOU

